Inverse Semigroups Acting on Graphs

نویسنده

  • JAMES RENSHAW
چکیده

There has been much work done recently on the action of semigroups on sets with some important applications to, for example, the theory and structure of semigroup amalgams. It seems natural to consider the actions of semigroups on sets ‘with structure’ and in particular on graphs and trees. The theory of group actions has proved a powerful tool in combinatorial group theory and it is reasonable to expect that useful techniques in semigroup theory may be obtained by trying to ‘port’ the Bass-Serre theory to a semigroup context. Given the importance of transitivity in the group case, we believe that this can only reasonably be achieved by restricting our attention to the class of inverse semigroups. However, it very soon becomes apparent that there are some fundamental differences with inverse semigroup actions and even such basic notions such as free actions have to be treated carefully. We make a start on this topic in this paper by first of all recasting some of Schein’s work on representations by partial homomorphisms in terms of actions and then trying to ‘mimic’ some of the basic ideas from the group theory case. We hope to expand on this in a future paper [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A graphical difference between the inverse and regular semigroups

In this paper we investigate the Green‎ ‎graphs for the regular and inverse semigroups by considering the‎ ‎Green classes of them‎. ‎And by using the properties of these‎ ‎semigroups‎, ‎we prove that all of the five Green graphs for the‎ ‎inverse semigroups are isomorphic complete graphs‎, ‎while this‎ ‎doesn't hold for the regular semigroups‎. ‎In other words‎, ‎we prove‎ ‎that in a regular se...

متن کامل

Cayley Color Graphs of Inverse Semigroups and Groupoids

The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.

متن کامل

On the Graphs Related to Green Relations of Finite Semigroups

In this paper we develop an analog of the notion of the con- jugacy graph of  nite groups for the  nite semigroups by considering the Green relations of a  nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a  nite semigroup S , we  first atte...

متن کامل

Schur–weyl Dualities for Symmetric Inverse Semigroups

We obtain Schur-Weyl dualities in which the algebras, acting on both sides, are semigroup algebras of various symmetric inverse semigroups and their deformations. AMS Subject Classification: 20M18; 16S99; 20M30; 05E10

متن کامل

Brandt extensions and primitive topologically periodic inverse topological semigroups

In this paper we find sufficient conditions on primitive inverse topological semigroup S under which: the inversion inv : (H(S)) (H(S)) is continuous; we show that every topologically periodic countable compact primitive inverse topological semigroups with closed H-classes is topologically isomorphic to an orthogonal sum P i2= Bi (Gi) of topological Brandt extensions Bi (Gi) of countably compac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004